Transistor Inverter

Built-in EMI noise filter

 Introducing the world's top class compact inverterVF-S11 3PH-200/240V-0.75w/h/TP
(1)危険

A DANGER

- Read ithe instruction manual.
- Do not open the cover while power

Do not open the cover while power
is \mathbf{s} pplopo of for 10 mimutes ather
powet has been removed.

They look the same,

but if you crack the shell you can see ther He chee The VF-S11 reveals the potential anci uneot Me Hers

 manutacturer a d p pants that
have acquird
leet centification, the worldywide
quality assurance benchmark.

New Global Standard Inverter TOSVERT ${ }^{T M}$
Vझ-S'1'1

VF-S11 -The easy-to-use inverter for a variety of machines and facilities

For users who need large starting torque Conveyors, hoists, stairway elevators, and other conveyance
machinery often need a large torque at startup. The VF-S11 machinery often need a large torque at startup. The VF-S11 200% or more*. This provides sufficient leeway in applications that require large starting torque. *Wen a TosHIBA standard 4--pole
is the drive source(TTorue may difer
according to voltage and model.)

For users troubled by electromagnetic noise Equipment such as commercial ironing boards, car washers and indoor running machines, that are used in the fields of health,
medicine and weliare care, the environment and in our dally ives, the surrounding area if they generate electromagnetic noise filter in its compact body to drastically reduce any generated electromagnetic noise. The VFS11 also complies with the EU
EMC Directive. (See page 4.)
 Commercial ironing boards
 -

For users who place importance on maintenance Fans, pumps, blowers, and air-conditioning equipment must be maintained on a regular basis. The VF-S11 monitors the expected replacement period of spare parts and outputs an alarm to serve as a rough guideline for when to perform designed to have a life of 10 years*. In addition, the VF-S11 can be used in an ambient temperature of up to $60^{\circ} \mathrm{C}$ and demonstrates excellent environmental resistance.
Ambient temperature: annual average 40°, output current: 80° of rated * Ambient temperature: annual average 40° C, output current: 80% of rated
current, 24 -hour operation 365 days per year

2棌

For users who need expandability
You often need to control and monitor systems by communications, for example, in building air-conditioning systems and plant line control
systems. As well as being highly expandable, the V Strminal board, which allows you to easily mount optionally available communication boards (RS-485, DeviceNet* and

For users who need a wide capacity and range of models For obtaining spare parts and easy maintenance for the same ind of inverters?
For an inverter in its class, the VF-S11 boasts a broad capacity
range extending up to 15 kW . The VF-S11 also comes in a range extending up to 15 kW . The VF-S11 also comes in a neup of totaly enclosed box types that can be used in seve
Line-up

Applicable specification by each segment

The VF-S11 is provided with a wide range of useful function for machinery and facilities in various industrial sectors and applications.

Fan \& Pumps	Air-conditioning systems, various fans, blowers, pu plumbing/sewerage systems, clean rooms, driers
Food processin machinery	Bread, confectionery, tea, and noodle making machines, rice, wheat and powder milling machines, mixers, slivers, and fruit selection machines

Conveyance machinery	Conveyors, automatic vertical storage units, hoists dumbwaiters
htorcue Compac	Ce Capaitrane Forally

Packaging machinery	Trimming machines, packing machines, wrapping machines, band tighteners
High torque Noise filter Capacily range Totally enclosed	Compact Side-byside Detachable Cominumicions
Commercial facility equipment	Commercial ironing boards, car washing machines, raw garbage disposal, dust collectors
	Compact Side-byside Comminctions Caparatyrane

Amusement machinery	Batting machines, pinball feeders, game machines			

Printing machinery	Platemakers, binding machines, printing presses
	Side-byside Caparity renge
Agricultural machinery	Rice and wheat milling machines, fruit selection machines
	Compact Side-by-side $60 \mathrm{C}^{\circ}$ Totally endosed

Semiconductor production equipment	Semiconductor production equipment, LCD production equipment, electronic component production and assembly machinery
High torque Noise filter Speed control Ground capacitor	Compact Side-byside Lie 10 years Capactiven

Woodworking machinery	Lumber machinery, woodworking machinery, plywood making machinery
Hish torque Compact Capacityrange Colalily endosed500 Hz Ponerovilage	
Chemical machinery	Mixers, extruding machines, centrifugal separators, painting machines, pulverizers

Machine tools	Lathes, driling machines, hobbing machines, grinding machines, boring machines		
High torque	Compact		Capasaty range
:---			
500 Hz			

Metal processing machinery	Various rolling and shearing machinery, mechanical pressing, winding and take-up machines
High torcue Compact Baipyesemene	Caparitrange
Panel manufacturer	Control panels, special control panels
Compact Sidebyside	

General	General related items, common items, other
History Log details	28 monitors

Explanation of symbols		scribed pages 1 and 2.		:Described page 4.		:Functions enabled on all models
Hisht torue Hightorque (1	Capariveme	Wide	8 inputs	8 logic inputs	Standards	(CE
Noses flicer Builitin noise filter	Travereme	Toally	atupturcios	2 ouputumind fincions are assigat	Sindsoss	Sinksource logic sw
Compact Smallsized, compact	Eneys saings	Dynamic energy saving function	Step widh	Varable step width seting	Hisory	Histor function
Steebyside Side-by-side installaion	Deceleration	Dynamic deceleration time reduction	we unit	Free unimulupipicioro fador, bias seting	Log deails	Deailed diformation of past triping
\square mameram Epem	Resatar	lmane	500 Hz	Max. frequency 500 Hz	28	28 monitor funcions fower, wathour pow
	Nonstop		Puse train	Puse trin output	Storage	Storage of user perameler setings
	Onetowh	One	Speed contue	Speed contro accuracy		
Deasachable Detachabe temmina llock	PIL control	PID contro with wait itme	Ponerovolage			
Comminaliote Buitit communications opio	Baingre	-in traking resistor dive	Giound	Grund capacior disommedios smich		

Dynamic Automatic Energy Savings
Eleags simes Dynamic automatic energy savings: A new function exclusively for fans
and pumps in addition to the conventional energy savings mode. With this and pumps in addition to the eonventional energy savings mode. With this
function, you can expect considerable energy savings.

 the regenerative energy from the motor to oontinue inverter operation when a
power interruption occurs during operation. In the same way, regeneative
energy can be used to decelerate the motor to a stop without the inverter

Various Input Terminals

8 inputs 8 contact input terminals: Analog input terminals can be selected as
contact inputs. This means that up to eight contact inputs can be set to support more complex settings.
8 . inuts 76 menus:
functions sely of operation specifications are supported as
from 66 menus can be individually assigned to contact input 8erminals. Use of external power supply possible: A PLC terminal is provided for
input of an external $+24 V$ power supply. This is convenient when the inverter is connected to a programmabere contrioller. A +24 V power supply is also
integrated int the inverter which can also be used for contact input.

Various Output Terminals
2apentatumes 3 contact output terminals: Various outputs are provided on three
terminals, relay contact (1c) output, relay contact (1a) output, and open collector output.
Puste tine Pulse train output: Open collector output is insulated from other circuits

 scompatibility with various operation specifications. 2amematumase Analog output terminal: Any of 0 to $10 \mathrm{~V}, 0$ to 1 mA and 4 to 20 mA can
be selected. Also, data can be selected from 20 menus.

Compatibility with World's Main Standards
Standards Compatibility with main standards: All models are compatible with the
World's Main Standards (EC Directive (CE marking), UL, and CSA. Some of Ctick complied dodelels are also evailable.

Singlephases modeds, 500 V models	High-attenuation EM filter	Compatibe on standard products
3-phase 240 V models	Standard fiter	Opionalys compatible

Full Lineup of Monitor and Display Functions
28 monitos) Extensive monitor menus: 28 monitor values including load current and
toras Torquue current can be viewed in real time.
Loodealis Monitor a trip: 28 momentary monitor values for when a trit occurs can
be veien Log deails Monitor at trip: 28 momentary monitor values for when a trip occurs can
ge viewed. Ten monitor values aras stord in memory or the last four inverter
operations, which is effective pin pinopinting the cause of a trip.

 Hisor History function This function is for displaying the latest five changes
made to parameter settins. This is displayed in the top menu (AUH), which is
 actor the iree unit display. This display shows speed of rotation, ine speed
and other units in addition tritequency.
Step widh Varibie step width setting: The change increment of the frequency When an arrow Key on the panel is pressed can be set as desired. For example,
this is convient when you want to change the frequency in 10 Hz increments
each time that a key is pressed

Safe Maintenance
Onetouch One-touch fan replacement: The cooling fan, one of the service parts,
can be easily remeved for renlacem can be easily removed tor replacement. The fan, of course is diesigned to last a
1ong time as it has a temperature-based ONOFF ontrol function.

Extensive Communication Functions
Detactabsele Built-in communications option board: The detachable terminal block
board can be detached and swapped with various internal option boards. Coard can be detached and swapped with various internal option boards.
Cars avions option boards including RS-485, DeviceNET and LowWorks

 and monitoring. Inverter-toinverter comminications it also supported, which
enables masterslave control on just inverters without the aid of a host
controler.

Other Features
 Speas oantald Speed control accuracy: Speed control accuracy is is improved by high
startu torque and current vector calculation control, a TOSHBA proprietary
control system. stantup
control sysuem.
soo the
Output frem
Soo He Output frequency: The VF-S11 can be used in a wide range of
applications as its maximum output frequency is 500 Hz .
 braking resistor is integrated into all
loads to be stopped in a short time.

\square Common specification

8．Standard specifications

	Hem	Specification												
Input voltage class		3 －phase 240V												
Applicable motor（kW）		0.4 0.55			0.75	1.5	2.2		4.0	5.5	7.5	11		15
	Type	VFS 11												
	Form	2004PM	2005		2007PM	2015PM	2022P		2037PM	2055PM	2075PM	2110		2150PM
	Capacity（kVA）Note 1）	1.3	1.4		1.8	3.0	4.2		6.7	10	13	21		25
$\begin{aligned} & \text { 誉 } \\ & \text { cu } \end{aligned}$	Rated output current （A）Note 2）	$\begin{gathered} 3.3 \\ (3.3) \\ (3) \end{gathered}$	3.7		$\begin{gathered} 4.8 \\ (4.4) \\ \hline \end{gathered}$	$\begin{gathered} 8.0 \\ (7.9) \\ \hline \end{gathered}$	(10)		$\begin{aligned} & 17.5 \\ & (16.4) \end{aligned}$	$\begin{gathered} 27.5 \\ (25.0) \\ \hline \end{gathered}$	$\begin{gathered} 33 \\ \text { (33) } \end{gathered}$	$\begin{gathered} 54 \\ (49) \\ \hline \end{gathered}$		$\begin{gathered} 66 \\ (60) \\ \hline \end{gathered}$
	Output voltage Note 3 ）	3 －phase 200V to 240 V												
	Overload current rating	$150 \%-60$ seconds， $200 \%-0.5$ second Note 4）												
$\frac{0}{2}$ Voltage－frequency 3 0 Allowable fluctuation		3 －phase 200 V to $240 \mathrm{~V}-50 / 60 \mathrm{~Hz}$												
		Voltage $+10 \%,-15 \%$ Note 5 ），frequency $\pm 5 \%$												
Protective method		IP20 Enclosed type（JEM 1030）												
Cooling method			Self－co	moling						Forced air－cool				
Color		Munsel $5 \mathrm{Y}-8 / 0.5$												
Builtin filter		Basic filter Note 7）												
3－phase 500V														
Ifem		Specification												
Input voltage class		3 －phase 500V												
Applicable motor（kW）		0.4	0.75		1.5	2.2		4.0		5.5	7.5	11		15
	Type	VFS11												
	Form	4004PL	4007PL		4015PL	4022PL		4037PL		4055PL	4075PL	4110PL		4150PL
	Capacity（kVA）Note 1）	1.1	1.8		3.1	4.2		7.2		11	13	21		25
$\begin{aligned} & \text { 圌 } \end{aligned}$	Rated output current （A）Note 2）	$\begin{gathered} 1.5 \\ (1.5) \\ \hline \end{gathered}$		$\begin{aligned} & 2.3 \\ & 2.1) \end{aligned}$	$\begin{gathered} 4.1 \\ (3.7) \\ \hline \end{gathered}$	$\begin{gathered} 5 . \\ 5 . \end{gathered}$		$\begin{gathered} 9.5 \\ (8.6) \end{gathered}$		$\begin{gathered} 14.3 \\ (13.0) \end{gathered}$	$\begin{gathered} 17.0 \\ (17.0) \end{gathered}$	$\begin{aligned} & 27.7 \\ & (25.0) \end{aligned}$		$\begin{gathered} 33 \\ (30) \\ \hline \end{gathered}$
	Output voltage Note 3）	3 －phase 380V to 500 V												
	Overload current rating	$150 \%-60$ seconds， $200 \%-0.5$ second Note 4）												
		3 －phase 380 V to $500 \mathrm{~V}-50 / 60 \mathrm{~Hz}$												
	Allowable fluctuation	Voltage $+10 \%,-15 \%$ Note 5 ），frequency $\pm 5 \%$												
Protective method		IP20 Enclosed type（JEM1030）												
Cooling method		Forced air－cooled												
Color		Munsel $5 \mathrm{Y}-8 / 0.5$												
Built－in filer		High－attenuation EMI filter Note 8）												
1－phase 240V		－3－phase 600V												
liem							Specification 3 －phase 600V Note 6）							
Input voltage class		1－phase 240V												
Applicable motor（kW）		0.2	0.4	0.75	1.5	2.2	0.75	1.5	2.2	2 4．0	5.5	7.5	11	15
$\begin{aligned} & \text { O. } \\ & \text { 喭 } \end{aligned}$	Type	VFSI 1 IS												
	Form	2002PL	2004PL	2007P	L 2015PL	2022PL	6007P	6015P	P 6022	2P 6037P	6055P	6075P	6110 P	6150P
	Capacity（kVA）Note 1）	0.6	1.3	1.8	3.0	4.2	1.7	2.7	3.9	9.1	9.0	11	17	22
	Rated output current （A）Note 2）	$\begin{gathered} 1.5 \\ (1.5) \end{gathered}$	$\begin{aligned} & 3.3 \\ & (3.3) \end{aligned}$	$\begin{gathered} 4.8 \\ (4.4) \end{gathered}$	$\begin{gathered} 8.0 \\ (7.9) \\ \hline \end{gathered}$	$\begin{gathered} 11.0 \\ (10.0) \end{gathered}$	$\begin{aligned} & 1.7 \\ & (1.5) \\ & \hline \end{aligned}$	$\begin{gathered} 2.7 \\ (2.4) \end{gathered}$	$\begin{gathered} 3.9 \\ (3.5) \end{gathered}$	9 6.1 (5.5)	$\begin{gathered} 9.0 \\ (8.1) \end{gathered}$	$\begin{aligned} & 1.0 \\ & \text { 19.9) } \end{aligned}$	$\begin{aligned} & 17.0 \\ & (15.3) \end{aligned}$	$\begin{aligned} & 22.0 \\ & (19.8) \end{aligned}$
	Output voltage Note 3）	3 －phase 200 V to 240 V					3 －phase 525 V to 600 V							
	Overload current rating	$150 \%-60$ seconds， $200 \%-0.5$ second Note 4）					$150 \%-60$ seconds， $200 \%-0.5$ second Note 4）							
$⿳ 亠 口 冋 刂$ Voltage－frequency		1 －phase 200 V to $240 \mathrm{~V}-50 / 60 \mathrm{~Hz}$					3 －phase 525 V to $600 \mathrm{~V}-50 / 60 \mathrm{~Hz}$							
		Voltage	＋ 10% ，	15\％No	Ste 5），frequen	y 5 5\％	Voltage $+10 \%,-15 \%$ Note 5 ），frequency $\pm 5 \%$							
Protective method		IP20 Enclosed type（JEM 1030）					IP20 Enclosed type（JEM1030）							
Cooling method		Self－cooling			Forced air－cooled		Forced air－cooled							
Color		Munsel $5 Y-8 / 0.5$												
Builtion filer		High－attenuation EM1 filter Note 8）					No filter							

 Note 3 ．Maximum

Note 6 ．If you are using 6 oove model，be sure to connect ta innout reactor（AC））

Note 9 Abve $40^{\circ} \mathrm{C}$ ：Remove the protective seal from the top of the inverte．Above $55^{\circ} \circ$ ：Remove the seal trom the top of the inverer and see the inverer with the rated ouput urrent reduced．

Connection diagram and selection of wiring devices

Source (Positive) logic : common = P24

Main cicuitit ooweres supply

Terminal functions

[^0]

External dimensions

Input voliage	Applicable motor	Type	Dimensions (mm)							Drawing	Approx. weight
			72	130	D	60	H1	H2	D2		
3 -phase 240V	0.4	VFST1-2004PM			120		121.5	15	8	A	0.9
	0.75	VFS11-2007PM			130						1.1
	1.5	VFSS1-2015PM	105	130	130	93	121.5	13		в	1.2
	2.2	VFS 1-2022PM	107		150						1.3
	4.0	VFS 1-2037PM	142	170	150	126	157	14		c	2.2
	5.5	VFSS 1-2055PM	180	220	170	160	210	12		D	4.8
	7.5	VFS 1-2075PM									4.9
	11	VFSS11-2110PM	245	310	190	225	295	19.5		E	9.3
3 -phase 500V	0.4	VFS 11-4004PL	107	130	150	93	121.5	13	8	в	1.4
	0.75	VFS 1-4007PL									1.5
	1.5	VFS 1-4015PL									1.5
	2.2	VFSS 1-4022PL	142	170	150	126	157	14		c	2.3
	4.0	VFSS 1-4037PL									2.5
	5.5	VFSI1-4075PL	180	220	170	160	210	12		D	5.0 5.1
	11	VFS 11-4110PL	245	310	190	225	295	19.5		E	9.6
	15	VFSS 1-4150PL									9.6
1-phase 240V	0.2	VFSI 1 1 -2002PL	72	130	130	60	121.5	15	8	A	1.0
	1.5	VFSI1 1 -2015PL	107	130	150	93	121.5	13		в	1.4
	2.2	VFS $11 \mathrm{~S}-2022 \mathrm{PL}$	142	170	150	126	157	14		c	2.2
3 -phase 600V	0.75	VFS11-6007P	107	130	150	93	121.5	13	8	в	1.3
	1.5	VFS11-6015P		170							
	2.2	VFS11-6022P	142		150	126	157	14		c	2.1
	5.5	VFS11-6055P	180	220	170	160	210	12		D	4.7
	7.5 11	VFSS11-6075P	245	310	190	225	295	19.5		E	8.8
	15	VFS11-6150P									8.8

82) List of parameters

How to read the monitor display?

Monitor display

The LEDs on the operation panel display the following
symbols to indicate operations and parameters.
tLD symbols to indic
LED (number)

0	1	2	3	4	5	6	7	8	9	-
a	1	E	3	4	5	E	7	B	G	-

LED (alphabet)

Aa	Bb	C	C	Dd	Ee	Ff	Gg	H	h	I	i	Jj	Kk
LI													

Extended parameters I

Parameters for setting functions that cannot be fulfilled by basic parameters.
Input terminal functions assignment parameters

Input terminal functions assignment parameters			
A variety of functions can be given to various compatible input terminals by assigning the function nun for the parameter in the table below.			
Tille	Functi	Adusisment range	
$F \mathrm{FOB}$	Amas sative function selection 1	0.75 (Notutition)	
F110	Amas sactive function selection 2	0.75 (ST)	
Fi:1	Input teminal selection 1 (F)	0.75 (F)	
Fite	Input teminal sesection $2(\mathrm{R})$	0.75 (R)	
F:13	Input temina seseaction 3 (RES)	0.75 (RES)	
Fith	Input teminal sesection 4(S1)	0.75 (SS1)	
F:15	Input teminal selection 5 (22)	0.75 (SS2)	
F:16	Input teminal selection 6 (3)	0.75 (SS3)	
Fin	Input teminala selection 7 (MB)	5-17(S54)	
F:1B	Input teminala selection 8 (NA)	5-17 (AD2)	

input terminal functions list

Noid		Wois	Function
0	No tuncion	${ }^{38}$	Frequency coommand forced suwtcring
	Standy	39	No.2 Smitching of iv/ seting
2	Foward un command	40	Combination ofNo. 5,39 and 61
3	Reverse un command	41	Frequency $\mathrm{P} P$ Stgan inut tom exemal onolacts
4	Jog un mode	42	Frequency Down signal inut tome exemal oontacts
	Accelerationdeceleration 2 pater salection	43	Fepencruppow
6	Presetspeed coommand 1	44	Combination of No. 10 and 43
7	Prasestspeed command 2	45	Invesison of No. 11
	Prasestspeed command 3	46	Themal trip sop signal iput tom exemal der
	Prestispeed coommand 4	47	Invesision of No. 46
10	Resest coommand	48	Forced switching tom remoie tolocal control
11	Tip stop command tom exemal inut tevice	49	Operation holding (stop of 3 wire opeation)
12	Smictingo coumnand mode and fevenero seting mode	50	
	DC braking command	51	
14	PiD contol probibied	52	Forced operation flactory conifuration rea
15	Pemisision of parameter editing	53	Firespeed contol
	Combination of No. 1 and 10	54	Coast stop (gate off)
17	Combination of No. 1 and 12	55	Invesision of No. 10
18	Combination of IN. 2 and 4	56	Combination of N .1 1 1 and 2
19	Combinationo o No. 3 and 4	57	Combination of No. 1 and 3
20	Combination of No. 2 and 5	58	Acceleationdseceleation 3 selection
21	Combination o No. 3 and 5	59	Combination of No. 2 and 58
22	Combination of No. 2 and 6	60	Combination of No. 3 and 58
23	Combinationo o No. 3 and 6	61	Forced swidiching of stal prevenion level 2
24	Combination of No. 2 and 7	62	Holing of AY-AC cemmina outut
25	Combinationo of N .3 3 and 7	63	Holding of OUT.Not teminal outut
${ }^{26}$	Combination of No. 2 and 8	64	
${ }^{27}$	Combination of N .3 a and 8	65	PIIC conto in ingegal value clear
${ }^{28}$	Combination of No. 2 and 9		Combination ot IN. 1, , 2and 6
29	Combination of N .3 .3 and9	67	Combination of N. $1.1,3$ and 6
${ }^{30}$	Combination of to. 2.5 and 6	68	Combination of No. 1,2 and 7
${ }^{31}$	Combinatio or $\mathrm{N} .3 .3,5$ and 6	${ }_{70}^{69}$	Combination of No. 1,1, and 7
	Combination o N0. $3,5,5$ and 7	71	Combination of No. $1,1,3$ and 8
34	Combination of No. 2,5 and 8	72	Combination of No. 1,2 and 9
${ }^{35}$	Combination of No. 3,5 and 8	73	Combination of No. 1,3, and 9
${ }_{36}$	Combination of A. 2.5 , and 9	74	Combination of No. 1,1, and 4
37	Combination of No. 3,5 and 9	75	Combination of No. .1, a and 4

Output terminal functions assignment parameters

Protection parameters

Set o generate high toruve to match orad or motor.

Panel display parameters
Setit changing units displayed of various display methods.

Tille	Function	Adistmentrange	Dosaninstine
F70:	Unitselection	$0: \% \%$, : A Amperee) ((vol)	
F70e	Free unit selection	0.00: Invalid, .0.0-200.0	0.00
$F 705$	Incination characeersisic	0 : Negative inciliation,	
	of tree unitidisply	1: Positive inclination	
F706	Free unitdisplay bias	0.FH1 (Hz)	0.00
F707	Free step ((pessing a panel key once)	0.00: Inalia, 0.01-FFH(Hz)	0.00
F708	Free step 2 (panel isplay)	0: Invalid, 1.255	
F7\%	Standard monitor display stection	0,1,2,3,4,5,6,7	
F\% 9	Canceling of operation command when standby terminal (ST) is turned off	0 : Operation command canceled (cleared), 1: Operation command retained	

FTE: : Panen stanop patem tem

Extended parameters II

Parameters for setting higher functions.

(2) For inverter users

Leakage current

This inverter uses high-speed switching devices for PWM control. When a relatively long cable is used for power supply to an inverter, current may leak affecting peripheral equipment. The intensity of such a t leakagate curce, advensersely PWM carrier frequency, the lengths of the input and output cables, etc., of the inverter. To
measures.
(Effects of leakage current]
Leakage current which increases when an inverter is used may pass through the
Route (1)... Leakage due to the capacitance between the ground and the noise fiter ... Leakage due to the capapacitiance between the ground and the inverter the inverter and the motor
Route (4) another power distributuonon line
Route (5)... Leakage through the grounding line common to motors
Route (6) ... Leakage to another line because of the capacitance of Leakage current which passes through the above routes may cause the following
-ouble.

- Malfunction of a leakage circuit breaker in the same or another power
distribution line
Dise produced at the output of an electronic device in another power
stribution line
vation of an external thermal relay installed between the inverter and tle Paran

[Measures against effects of leakage current]
The measures against the effects of leakage current are as follows,
(1) Decrease the PWM carrier frequency of the inverter. Note)
(2) Use radio-frequency interference-proof ELCBs as ground-fault interrupters not only the system into which the inverter is incorporated but also othe
systems. When ELCBs are used, the PWM carrier freauency needs to b increased to operate the inverter.
(3) When connecting multiple inverters to a single ELCB, use an ELCB with
high current sensitivity or reduce the number of inverters connected to the LLCB.
ELCB
Elo

2) Measures against malfunction of ground-faut relay:
(1) Decrease the PWM carier frequency of the inverter. Note)
(2) Install ground-fault relays with a high-frequency protective function (e.g.,
Toshiba CCR12 tye of relays) in both the same and other lines. When ELCB Tossiba CCR1 1 type of relays) in botht hhe same and other ines. When ELCCBS
are used, the PWM carrier frequency needs to be increased to operate the are used
inverter.
Measures against noise produced by other electric and electronic systems: (1) Separate the grounding line of the inverter from that of the affected electric
(2) Decrease the PWM carrier frequency of the inverter. Note
3) Measures against mattunction of externa thermal relays:
(1) Remove the external thermal relay and use the electronic thermal function of
the inverter instead of it. (Unapplicable to cases where a single inverter is used
to drive more than one motor. Refer to the instruction manual for measures to
be taken when thermal relays cannot be removed.). Not
4) Measures by means of cirring fand groundending
(1) Use a grounding wire as large as possible.
(2) Separate the inverter' grounding wire from that of other systems or install the
grounding wire of each system separately to the grounding point:
(3) Ground (shield) the main circuit wires with metallic conduits.
(4) Use the shortest possible cables to connect the inverter to the motor

Ift the inverter has a high-attenuation EMI fiter, turr off the grounding capacitor
detachment switch to reduce the leakage current. Note that doing so leads to a reduction in the noise attenuating effect.
This ivererea lows you to decrease the frequence up to $2.0 \mathrm{k}-$
Ground faul
Before begining operation, thoroughly check the wiring between the motor and the Before begining operation, thoroughly check the wiring between the mott
invertere for incorrect wiring or short i ircuits. Do not ground the neutral
point of any starconnected motor

Radio interferenc
[Noise produced by inverters]
Since this inverer enorors PWM control, it produces noise and sometimes affecis nearby instrumental devices, electrical and electronic systems, etc. The effects of
noise greaty vary with the noise resistance of each individual device, its
wiring condition, the distance between it and the inverter, etc
IMeasures against noises)
iverter are classified into transmissio [Examples of protective measures]

Thate the power line from other lines such wo w-aren ines sid
lines, and install them apart from each other.
-Shield cables and wires with grounded metallicic conduits, and cover electronic
systems with grounded
Qinstal the input and output cables of the inverter apart from each other.
OUse shielded twisted pair wires for wiring of the weak-current and signal
and always ground one of ecch pair of wires
aGround the inverter with grounding wires
separately from other devices and system
sse 500V models have built-in nois

Power factor improvement capacitors
Do not install a power factor improvement capacitors on the input or output side of Ins inverter.
Instaling a power factor improvement capacitor on the input or output side causes current containing harmonic components to flow into the capacitor, adversely
affecting the capacitor itself or causing the inverter to trip. To improve the power affecting the capacitor iseaf or causing the inverter to trip. To improve the power
factor, install an input AC reactor or a DC reactor (optional) on the primary side of

Installation of input AC reactors
These devices are used to improve the input power factor and suppress high
harmonic currents and surges. Instal an input AC reactor when using this inverter
under the forlowing and condritions:
(1) When the pow
(2) When the inverter is connected the same power distribution system as a
(thyristor-com mitted control equipment.
(3) Wenthe inverer is connected to the same power distribution system as that
of
of dietorted wave-producing systems, such as arce furnaces and large-capacity
inverters.

When wiring the inverter

Wiring precautions

Installing a molded-case circuit breaker [MCCB]
(1) nstall a molded-case circuit breaker (MCCB) on the inverter's power supply
(2) Avoid turring the moldeded-case circuit breaker on and off frequently to turn on/off
(3) To turn on/off the motor frequently, close/break the control terminals F (or R)

Installing a magnetic contactor [MC] [primary side]
(1) To prevent an automatic restart after the power interruption or overload relay has the power supply.
(2) The inverter is provided with a failure detection relay (FL), so that, if its contactis are connected to the operation circuit of the magnetic contactor on the priman
side, the magnetic contactor will be opened when the protective circuit of the ininerter is activated.
3) The inverer can
(3) The inverter can be used without a magnetic contactor. In this case, use an
MCCB (equipped with a voltage tripping device) for opening the primary circuit MCCB (equipepd with a voltage triping device) for opening the primary circl
(4) Aven the inverter protective circuitit sactivated.
(4) Avioid turring the magnetic contactor on and off frequently to turn on/off the
(5) Totor turn on/off the motor frequently, close/break the control terminals F (or R) (5) To
CC.

Installing a magnetic contactor [MC] [secondary side]
(1) As a rule, if a magnetic contactor is installed between the inverter and the motor, do not turm ON/FFF while running. (If the secondary-side contactor is turned ONOFF while running,
(2) A magnetic contactor may be installed to change the motor or change to the commercial power source when the inverter is stopped. Always see an interlock
with the magnetic contactor in this situation so that the commercial power supply is with the magnetic contactor in this situation so
not applied to the inverter's output terminals.
External signal
(1) Use a relay rated for low currents. Mount a surge suppesor the coil of the re relay.
(2) When wiring the control circuit, use shielded wires or twisted pair cables.
(3) Al control terminals, except FLA, FLB and FLC are electronic circuits. Therefore, input signal must insulate with power circuit.
Installing an overload relay
(1) The VF-S11 inverter has an electronic-thermal overload protective functio However, in the following cases, the thermal relay operation level must be adjusted or an overtoad relay matching the motor's characteristics must be installed
between belween the inverter and the motor.
equivalent.
(b) When driving several motors simultaneously.
(2) When using the inverter to control the operation of a constant-toraue motor (VF
motor), change the protective characterisitic of the electronic thermal relay according to the seting of the VF motor.
(3) In order to adequately protect a motor used for low-speed operation, we
recommend the use of a motor equipped with a embedded thermal relay.

When changing the motor speed

Application to standard motors

Vibration
When a motor is operated with an industrial inverter, it experiences more vibrations
han when it is operated by the commercial power supply. The vibration can be han when it is operated by the commercial power supply. The vibration can be
reduced to a negligibe level by securing the motor and machine to the base firmly. the base is weak, however, the vibration may increase at a light load due to

Reduction gear, belt, chain
Note that the lubrication capability of a reducer or a converter
of the motor and the load machine may affected at low speeds.

 roduction of noise, a reduction in strength, or shortening of service life.
Frequency
sefore setting the maximum frequency to 60 Hz or higher, confirm that this

Application to special motors

Gear motor
When using an industrial inverter to drive a gear motor, inquire of the motor ear motor may cause insufficient lubrication.
Toshiba Gold Motor (High-efficiency power-saving motor) hiverter-driven operation of Toshiba Gold Motors is the best solution for saving
energy. This is because these motors have improved efficiency, power factor, and oise//ibration reduction characteristics when compared to standard motors.
ole-changing motor
Pole-changing motors can be driven by this inverter. Before changing poles,
Hight-pole-count motors
Note that hight-pole count motors (8 or more poles, which may be used for fans,etc tave higher rated current than 4 -pole moters.
The current ratings of multipole mototrs arere relatively high. So, when selecting an of the moter, you is below pay that of the inverter.
Single-phase motor
ecause single-phase motors are equipped with a centrifugal swith and capacitors for statring, they cannot be driven by an inverter. If only a single-phase, power sstem is availabls a 3 -phase motor can be driven by using a single-phase input
terter to convert it into a 3 -phase 240 V output. (A special inverter and a 3 -phase motor are required.)
Braking motor
When using a braking motor, it the braking circuit is directly connected to the inveriers's output terminalas, the brake cannot be re reased because of the lowered
starting voltage. Therefore, when using a araking moter Sarting voltage. Therefore, when using a braking motor, connect the braking circuit
the inverter's power supply side, as shown on the left. Usually, braking motors ot the inverter's power supply side, as sho
produce larger noise in low speed ranges.
Note: In the case of the circuit shown on the left, assign the function of detecting lowspeed signals to the RY and RC terminals. Make sure the parameter F130 is
set to 4 (factory default setting).

Peripheral devices

Selecting the capacity (model) of the inverter

Selection

Capacity
Refer to the applicable motor capacaities listed in the standard specifications. When driving a high-pole motor, special motor, or multiple motors in parallel, select less than the inverter's rated output current valuede.
Acceleration/deceleration times
The actual acceleration and deceleration times of a motor driven by an invererer are
determined by the torque and moment of inertia2 of the load, and can be calculated by the following equations.
The acceleration and deceleration times of an inverter can be set individually. In any case, however, they should be set longer than their respective values determined by the foloowing equation

Acceleration time	$\operatorname{ta}=\frac{(\mathrm{JMM}+\mathrm{JLL} \times \Delta \mathrm{N}}{9.56 \times(\mathrm{TM}-\mathrm{TL})} \text { (sec.) }$
Deceleration time	$\mathrm{ta}=\frac{(\mathrm{JMM}+\mathrm{JLL} \times \Delta \mathrm{N}}{0.56 \times(\mathrm{TB}+\mathrm{TLL})} \text { (sec) }$
Conditions	

Allowable torque characteristics
When a standard motor is combined with an inverter to perform variable speed
operation the motor temperature rises slighty higher than it normaly does during operation, the motor temperature ises slightly higher than it normally does during
commercial power supply operation. This is because the inverter output voltage has a sinusoidal (approximate) PWM waveform. In addition, the cooling becomes les a sinusidial approximate)
effective at low wheed, so the torqueform. In must ber reducatiod according to to the frecounency
Whes When constant-torque operation must be performed at ow speeds, use a Toshiba v

[An example of V/f control at a base frequency of 60 Hz]	200	\square			
			Maximum torave		
					V
			Maximum alowabe coninuous torue		
	$\stackrel{c}{\circ}^{100}$	-			
		-			
	产 60	1			
		Out		quency ((Hz)

Note 1.100% of torque refers to the amount of torque that the motor produces when it is running at a 6 OHz -synchronized speed. The starting torque is
smaller in this case than that required when power is supplied from a commercial power line. So, the characteristicoer is supplied from Noperated need to be taken into consideration.
N. The maximum allowale torua eat 5 Hz can be calculated approximately b b
multiplying the maximum allowable torcaue at a a ase frequency of 60 Hz by

Starting characteristics
When a motor is driven by an inverter, its operation is restricted by the inverter's
overload current rating, so the statring characteristic is different from those obtained from commercial power supply operation. Although the starting torque is smaller with an inverter than with the commercial
power supply a high starting torque can be produced at low speeds by alisting the power supply, a high starting torque can be produced at low speeds by adjusting the
V/f patters torque boost amount or by employing vector control. (200\% in
sensorless control mode, thought this rate varies with the motor characaceristics.).
. sensorless control mode, though this rate varies with the motor characterisicics.)
When a larger starting torque is necessan, select an inverter with a larger capacity and examine the possibility of increasingsthe motor capacity.

Harmonic current and influence to power supply Harmonics are defined as sinusoidal waves that is muttiple freguency of commercial
power (base freauency: 50 Hz or 60 Hz). Commercial power including harmonics power (dases frequenct Some elistoctritial aneverom. electronic devices produce distorted waves in their rectifying
Sond and smoothing circuits on the input side. Harmonics produced by a device influence
other electrical equipment and facilites in some cases (for example, overheating of phase advancing capacitors and reactors).

Input AC reactor

Remiabor

Model	$\begin{array}{\|l\|l\|} \hline \text { Rated } \\ \text { culfent } \\ (A) \end{array}$	Inverter type	Dimensions (mm)								Terminals	
			w	H	D	x	Y	d1	d2			
DCLS-2002	2.5	VFSS 11-2002PL	79	50	44	66	-	-		A	V1.25-3	0.6
DCL-2007	7		92	65	70	82	-	-	-	A	V2-3.5	1.2
DCL-2022	14		86	110	80	71	64	-	-		M4	2.2
DCL-2037	22.5		86	110	85	71	70	-	-	в	M4	2.5
DCL-2055	38	VFSI1-2055PM	75	130	140	50	85	85	55		M5	1.9
DCL-2110	75	VFSI1-2075~2110PM	100	150	150	65	85	95	55	c	M6	2.4
DCL-2220	150	VFSE1-21150PM	117	160	190	90	90	130	60		M8	4.3
DCL-2007	7	VFSI 1 -4004~401 5PL (Note)	92	65	70	82		-		A	V2-3.5	1.2
DCL-2022	14	VFSI1-4022, 4037PL (N0e)	86	110	80	71	64	-		в	M4	2.2
DCL-4110	38	VFSI1-4055~41 10PL	95	150	165	70	90	105	60		м5	3.0
DCL-422	75	VFSSI 1 -4150PL	105	160	185	80	100	130	65	c	M8	3.7

ox.
(ACL)

Fig. A

| Model | Rating |
| :--- | :--- | :--- |

Inverter type
-

 PFL2100s 3.phase 240V-100.50600H2 VFSS 1-2.150PM

 Note: PFLS2002S has 4 terminals

(3. Totally enclosed box type

$$
\begin{aligned}
& \begin{array}{l}
\text { - Operation panel } \\
\text { - Orequency setting potentiometer } \\
\text { - Sower switch for additional switches (Two) }
\end{array} \\
& \text { - Totally enclosed structure compliant with IP54 } \\
& \text { - Built-in noise filter } \\
& \text { - Equipped with all control devices as standard } \\
& \text { (Control devices compliant with IP55 } \\
& \text { specifications / All-in-one) } \\
& \text { - Built-in motor circuit breaker } \\
& \text { - Cooling wiring } \\
& \text { - Cooling structure: Self-cooling type }
\end{aligned}
$$

External dimensions

■ External dimensions

Input voltage class	Aplicable motor (kW)	Inverter type	Dimensions (mm)						Cabling hole	Drawing	Approx.weigh (kg)
			W	H	D	W1	H1	D2			
3ph-240V	$\begin{gathered} 0.4 \\ 0.75 \end{gathered}$	VFS 11-2004PME	210	240	163.3	192	218	13.7	$\begin{aligned} & \phi 19 \times 3 \\ & \phi 21 \times 1 \end{aligned}$	F	3.9
	1.5	VFS 11-2015PME	215	297	192.3	197	277	13.7	$\begin{aligned} & \phi 19 \times 1 \\ & \phi 23 \times 3 \end{aligned}$	F	5.9
	2.2	VFS 11-2022PME									
	4.0	VFS 11-2037PME	230	340	192.3	212	320	13.7			7.6
3ph-500V	0.75 1.5	VFS11-4007PLE	215	297		197	277	13.7	$\begin{aligned} & \phi 19 \times 1 \\ & \phi 23 \times 3 \end{aligned}$	F	6.1
	2.2	VFS 11-4022PLE	230	340	208.3	212	320	13.7			8.0
	4.0	VFS 11 -4037PLE									
	5.5 7	VFS 11-4055PLU	400	600	243	310	570	-	-	G	11.8
	11	VFS 11-4110PLU	450	700	267	340	670	-	-	G	17.0
	15	VFS 11-4150PLU									
1ph-240V	0.2 0.4	VFS11S-2002PLE	210	240	163.3	192	218	13.7	$\begin{aligned} & \phi 19 \times 3 \\ & \phi 21 \times 1 \end{aligned}$	F	4.0
	0.75	VFS11S-2007PLE									
	1.5	VFS115-2015PLE	215	297	192.3	197	277	13.7	$\begin{aligned} & \phi 19 \times 1 \\ & \phi 23 \times 3 \end{aligned}$	F	6.07.6
	2.2	VFS11S-2022PLE	230	340	208.3	212	320	13.7			

-Standard specifications * other specifications are the same as those of the standard type. See common specification on page 6 .

The tactory default sethings of tal other prarameters are the same as those of the
For parameter setins, see the tables of parameiers on page 10 . periodically.
Note 6: Instalation enviorment

Tille	Function	VF-St1	VFST11
	Command modes		
Friod	Freurency steting mode selection	0	2

- Compliance with IP55

IP54-compliant structures refer to structures that protect the contents from dust and harmful effects of water that drops from every direction. The inverter can be brought into compliance with IP55 specifications by making the wiring port watertight. (IP55-compliant structures refer to structures that protect the contents from dust and harmful effects of water that comes in a jet trom every direction.)
Note) 500 V class 5.5 to 15 kW range are IP00 type.

■Standard connection diagram

To users of our inverters :
Our inverters are designed to control the speeds of three-phase induction motors for general industry.

Precautions

* Read the instruction manual before installing or operating the inverter unit and store it in a safe place for reference.
* When using our inverters for equipment such as nuclear power control, aviation and space flight control, traffic, and safety, and there is a risk that any failure or malfunction of the inverter could directly endanger human life or cause injury, please contact our headquarters, branch, or office printed on the front and back covers of this catalogue. Special precautions must be taken and such applications must be studied carefully.
* When using our inverters for critical equipment, even though the inverters are manufactured under strict quality control always fit your equipment with safety devices to prevent serious accident or loss should the inverter fail (such as issuing an inverter failure signal).
* Do not use our inverters for any load other than three-phase induction motors.
* None of Toshiba, its subsidiaries, affiliates or agents, shall be liable for any physical damages, including, without limitation, malfunction, anomaly, breakdown or any other problem that may occur to any apparatus in which the Toshiba inverter is incorporated or to any equipment that is used in combination with the Toshiba inverter. Nor shall Toshiba, its subsidiaries, affiliates or agents be liable for any compensatory damages resulting from such utilization, including compensation for special, indirect, incidental, consequential, punitive or exemplary damages, or for loss of profit, income or data, even if the user has been advised or apprised of the likelihood of the occurrence of such loss or damages.

For further information, please contact your nearest Toshiba Representative or International Operations-Producer Goods.
The information in this brochure is subject to change without notice.

TOSHIBA

TOSHIBA INDUSTRIAL PRODUCTS SALES CORPORATION

International Operations
9-11, Nihonbashi-honcho 4-chome,
Chuo-ku, Tokyo 103-0023, Japan
Tel : +81-(0) $3-5644-5509$
Fax : +81-(0) $3-5644-5519$

[^0]:

